今日微信推荐

今日微博推荐

回归地球母亲之路——航天飞机的返回技术

发布时间2016-05-01 13:36:47  原作者:   点击数:

  自从地理大发现以来,太空成为人类最后的边疆。在 1961 年加加林首次实现载人航天后,可重复使用的航天飞行器就成为人们孜孜不倦的努力目标。航天飞机就是第一个可重复使用的载人航天器。

  出于种种技术和经济的考虑,航天飞机采用垂直发射、水平着陆的方式。航天飞机的发射是一个惊心动魄的过程。液氢液氧火箭发出雷霆万钧的推力,航天飞机在浓烟烈火中冉冉上升,最后划过长空,消失在蓝天深处。但是,“哥伦比亚”号在返航时悲剧性的解体,再次说明了航天飞机的回归其实是一个更富挑战的过程。

\

\

航天飞机发射的壮观景象,哥伦比亚空中解体,挑战者又是那么多问题,可能再也看不到航天飞机发射了

  理想的航天飞机(也称空天飞机)应该可以在不必特别准备的跑道上用自身动力滑跑起飞降落,在加速脱离地球引力进入轨道过程中不需要抛离昂贵的助推器,完成空间任务返回大气层时有优良的气动控制能力和正常的飞行能力,除添加燃料外不需要地面大修,就可以在短时间内再次出动。显然,现在的美国航天飞机只是在地面大修后可以重复使用、具有一定的再入段大气层滑翔机动能力的重型飞船而已,离理想航天飞机尚有一段距离。

\

哥伦比亚号在返回中解体

  航天飞机的气动设计是一个极富挑战的技术难题。航天飞机的水平着陆,实际上是无动力的滑翔着陆。换句话说,航天飞机一旦脱离地球轨道、进入大气层,就是一锤子买卖,不可能复飞了,必须降落下来,最好就是指定地点。这要求航天飞机具有良好的升阻比,可以滑翔一定的距离,在滑翔中具有良好的操控,尤其要有良好的着陆操控性能。换句话说,航天飞机要有良好的低空低速性能。理想情况下,这要求采用具有较高升阻比的细长机翼。但是,航天飞机在返回大气层之初,速度可以高达 24 马赫,这又要求航天飞机具有良好的极高速性能,否则不说操控的问题,要么气动应力把航天飞机扯碎,要么气动加热把航天飞机烧毁,所以这要求航天飞机最好采用阻力最小的升力体的布局。也就是说,由扁平短拙、前缘尖锐的机体本身产生必要的升力,根本不用常规意义下的机翼。经过大量的研究和计算,在对高低速飞行性能、滑翔距离、机动性、重量、减速和温度控制综合折中后,航天飞机的气动外形定为现在为人们所熟悉的升力体加三角翼的布局。折中都是有代价的,航天飞机的操纵特性据说和一块飞行的砖头差不多。

\

滑翔机的细长机翼提供最大的滑翔性能,但高速飞行时阻力巨大,结构应力也巨大

\

升力体没有机翼,直接用扁平的机体产生升力,这样阻力最小,最适合高速飞行

\

航天飞机的最后气动布局是升力体加三角翼,综合考虑从 24 倍音速到水平着陆速度的整个速度范围的气动性能

  航天飞机的机体还要考虑返回过程中气动加热所产生的极高的温度。从减低气动阻力以减少气动加热的角度看,航天飞机应该采用尖锐的头部。但理论计算和实验证明,再入过程中极高的速度使气动加热的升温速度太快,尖锐的头部对减小气动加热的作用微乎其微,头锥在时间和空间上受到高度集中的热负荷,根本没有时间散热,将很快被烧毁。耐热材料或隔热、散热、导热技术只能略微推迟被烧毁的时机,但不能从根本上改变被烧毁的结局。1951 年,NACA(NASA 的前身)物理学家亨利·艾伦在机密的内部研究中发现,高速再入大气层的航天器前端对空气产生强烈压缩,在前方大气中形成一个伞状的激波锥,激波前沿的空气密度急剧升高,在航天器前面像一堵移动的墙一样,航天器则在激波锥的尾流中前行。由于和前方静态空气直接接触的是激波锥而不是航天器本身,气动加热主要由激波前沿和前方的静态空气之间的压缩和摩擦产生。如果航天器表面和激波前沿保持一定的距离,气动加热所产生的热量将主要在空气密度较高的激波内传导和耗散,航天器在周围宽厚的边界层保护下,本身承受的热负荷就要小很多。于是,降低航天器热负荷的一个重要途径就是使激波锥前移,尽量远离航天器本体。根据这一发现,亨利·艾伦提出航天器的头部应该是钝形,而不是尖锐的。钝形头部可以有效地在减速过程中,在艏部推出一个宽大和强烈的激波,并使波前锋远离艏部和周围,就像平头的驳船船首推开的波浪一样。这就是为什么宇宙飞船、航天飞机、洲际导弹的头部都采用钝头锥体的原因。事实上,如果能够确保航天器在再入过程中不至于翻滚,平底朝下的再入姿态可以产生最大的保护效果。

标签:返回技术 

欢迎广大武器迷投递稿件,内容可以是武器介绍、航天、航空、海军、陆军、武器图集女兵图集、与武器有关的文章都可以投稿。

投稿信箱:
529264718@qq.com
bingkong0@163.com